
Analyzing Test Completeness for Dynamic Languages

Christoffer Quist
Adamsen

Aarhus University, Denmark
cqa@cs.au.dk

Gianluca Mezzetti
Aarhus University, Denmark

mezzetti@cs.au.dk

Anders Møller
Aarhus University, Denmark

amoeller@cs.au.dk

ABSTRACT
In dynamically typed programming languages, type errors
can occur at runtime. Executing the test suites that often
accompany programs may provide some confidence about
absence of such errors, but generally without giving any
guarantees. We present a program analysis that can check
whether a test suite has sufficient coverage to prove a given
type-related property, which is particularly challenging for
program code with overloading and value dependent types.
The analysis achieves a synergy between scalable static anal-
ysis and dynamic analysis that goes beyond what can be
accomplished with the static analysis alone. Additionally,
the analysis provides a new coverage adequacy metric as a
measure of the completeness of a test suite for a family of
type-related properties.

Based on an implementation for Dart, we demonstrate
how such a hybrid static/dynamic program analysis can be
used for measuring the quality of a test suite with respect to
showing absence of type errors and inferring sound call graph
information, specifically for program code that is difficult to
handle for traditional static analysis techniques.

1. INTRODUCTION
A well-known quote from Dijkstra is: “Program testing can

be used to show the presence of bugs, but never to show their
absence” [13]. This is of course true in general, but, as also
observed decades ago [19], there are situations where test
suites are complete in the sense that they allow verification
of correctness properties that hold in any execution. As a
trivial example, for a straight-line Java program that takes
a string as input, a single test execution suffices to detect
any null pointer bugs that may exist. More generally, test
suites may be complete with respect to local properties at
specific program points. In this paper, we explore how such a
notion of test completeness can be exploited for soundly type
checking challenging programming patterns in dynamically
typed languages.

One of the advantages of programming languages with dy-
namic or optional typing, such as, Dart [14], TypeScript [33],
Typed Racket [43], and Reticulated Python [45], is flexibility:
they allow dynamic programming patterns, such as, value-
based overloading [44, 1] and other forms of value dependent
types, that do not fit into traditional static type systems.
The cost of this flexibility is that type-related errors are not
detected until runtime and that type information is not avail-

able statically for guiding auto-completion and navigation in
IDEs or optimizers in compilers. Our goal is to provide pro-
gram analysis techniques that can automatically infer sound
and precise type information for such code. More specifically,
we focus on Dart and aim to ensure absence of runtime type
errors and to infer precise call graph information. Two kinds
of runtime type errors are particularly interesting in Dart
programs: subtype-violation errors at implicit downcasts and
message-not-understood errors at field and method lookup
operations. Programmers can benefit from knowing to what
extent their tests guarantee absence of such runtime errors.
Likewise, call graphs are useful for enabling dead code elimi-
nation and other optimizations, as well as for various kinds
of IDE support [16].

Example Figure 1 shows some Dart code from a sample
application shipped with the box2d library1 that uses the
vector math library,2 which illustrates a style of programming
that is common with dynamically typed languages and that
is challenging for static type analysis. The cross function
is overloaded in the sense that its behavior and return type
depend on the runtime types of its parameters: the branch in
line 4 returns type vec3 or the runtime type of the parameter
out, line 7 returns type double, and line 16 returns type vec2
or the type of out. Moreover, if the types of the parameters
at a call do not match any of the cases, then a failure occurs
in line 20 if assertions are enabled and otherwise null is
returned, which will likely trigger a runtime error later in the
program. The cross function is called, for example, in lines 32
and 33. In Dart’s checked mode execution, the assignments
to dp2perp and dp1perp will fail if the values being returned
are not of type vec3. In production mode execution, the
assignments will succeed, but the applications of * in line 34
will fail if dp2perp or dp1perp is of type double and the other
argument is of type vec2 or vec3, and + will fail if the left-
hand argument and the right-hand argument do not have the
same type. (Lines 26–27 show the implementation of + for
the case where the left-hand argument is of type vec2.) How
can the programmer be certain that none of these potential
type-related errors can occur in the application? Running
a few tests may give some confidence, but it is difficult to
know when enough testing has been done.

Traditional static analysis is not suitable for reasoning
about such code since very high precision (e.g. context sensi-
tivity and path sensitivity) would be needed, which is difficult
to achieve together with sufficient scalability. For the exam-

1https://github.com/financeCoding/dartbox2d
2https://github.com/google/vector_math.dart

1

https://github.com/financeCoding/dartbox2d
https://github.com/google/vector_math.dart

1 dynamic cross(dynamic x, dynamic y,
2 [dynamic out=null]) {
3 if (x is vec3 && y is vec3) {
4 return x.cross(y, out);
5 } else if (x is vec2 && y is vec2) {
6 assert(out == null);
7 return x.cross(y);
8 } else if (x is num && y is vec2) {
9 x = x.toDouble();

10 if (out == null) {
11 out = new vec2.zero();
12 }
13 var tempy = x * y.x;
14 out.x = -x * y.y;
15 out.y = tempy;
16 return out;
17 } else if (x is vec2 && y is num) {
18 ...
19 } else {
20 assert(false);
21 }
22 return null;
23 }

24 class vec2 {
25 ...
26 vec2 operator+(vec2 other) =>
27 new vec2.raw(x + other.x, y + other.y);
28 ...
29 }

30 ...
31 // solve the linear system
32 vec3 dp2perp = cross(dp2, normal);
33 vec3 dp1perp = cross(normal, dp1);
34 vec3 tangent = dp2perp * duv1.x + dp1perp * duv2.x;
35 ...

Figure 1: Motivating example, code from the vec-
tor math library (lines 1–29) and the box2d library
(lines 31–34).

ple described above, a context-insensitive analysis may be
able to show that cross can return values of type vec3, vec2,
or double (assuming that out is always also of one of those
types), but that information is not precise enough to rule
out the various type-related errors. Two-phase typing [44]
has been proposed to address similar challenges but is not
yet practical for realistic programs. Conversely, traditional
dynamic analysis is also not suitable as it does not give any
soundness guarantees. One notable exception, which has
inspired our work, is the constraint-based dynamic type in-
ference technique by An et al. [2]. It can infer sound type
information for Ruby programs using dynamic analysis, how-
ever, it requires full path coverage of every function in the
program being analyzed, which is rarely realistic.

This work We propose a hybrid of dynamic and static
analysis: one component is a lightweight static analysis that
provides information about where another component, a
dynamic analysis, has adequate coverage to provide sound
conclusions for a given test suite. Our key insight is that
such a combination of static and dynamic techniques can
help to determine when a test suite has sufficient coverage
to guarantee type-related correctness properties as in the
example.

The static analysis has two parts: a dependence analysis
and a type analysis (technically, a points-to analysis). It
is context- and path-insensitive and thereby scales to large

programs, and it is relatively easy to implement; notably
it requires simpler modeling of native functions than what
would be required by a fully static analysis approach.

In summary, the contributions of this paper are:

• We define a notion of test completeness as a sufficient
condition for a test suite to have enough coverage to guar-
antee a given type-related correctness property. Using a
lightweight static analysis to approximate test complete-
ness, we then demonstrate how a hybrid static/dynamic
analysis can produce sound type information for challeng-
ing dynamic programming patterns that resist traditional
static analysis.

• Based on an implementation, Goodenough,3 for the
Dart programming language, we evaluate the ability to
ensure absence of runtime type errors and to produce pre-
cise call graphs, compared to a more traditional technique
that uses the static analysis information only. Across a
variety of Dart programs, we find numerous examples
where precision is improved. Specifically, the analysis
is able to guarantee for 81 % of the expressions that all
types that can possibly appear at runtime are in fact
observed by execution of the test suite. The experiments
additionally show that the limiting factor of the precision
in some cases is the test coverage and in other cases
the precision of the dependence analysis, which suggests
opportunities for future improvements of the technique.

2. THE DART PROGRAMMING LANGUAGE
In this paper we use Dart as subject for presenting and

evaluating our technique. The Dart programming language
was introduced by Google in 2013 and has later been stan-
dardized by Ecma [14]. The language is now widely used
by Google and elsewhere, primarily as an alternative to
JavaScript but also for server-side high performance compu-
tation and, more recently, embedded devices. Dart supports
both object oriented and functional programming using a
Java-like syntax.

From our perspective, the most interesting aspect of the
language is its type system. Type annotations are optional
(the default is called dynamic). The static type checker can
warn about likely type errors in the parts of the program
where type annotations have been provided, while ignoring
the parts without type annotations. Warnings produced
by the type checker do not preclude executing the program.
Moreover, even for fully annotated programs, the type checker
is deliberately unsound. These design choices give Dart the
flexibility of dynamically typed programming languages, but
they also mean that type errors can occur at runtime.

Dart programs run in either production mode where type
annotations are entirely ignored, or checked mode where
implicit type casts are performed at assignments to non-
dynamic variables or fields, checking that the runtime type
is a subtype of the annotated type. Two kinds of runtime
type errors can occur: a subtype-violation error occurs if a
type cast fails, and a message-not-understood error occurs if
attempting to access a field or method that does not exist.
We here use the terminology from Ernst et al. [15] who
recently presented a formalization of a core of Dart with a
focus on its type system and the causes of unsoundness.

3Named in honor of J. B. Goodenough [19].

2

The example code in Figure 1 shows how programmers use
optional types in practice. Some variables and methods have
type annotations (e.g. dp2persp in line 32 and operator+ in
line 26), whereas in other parts (e.g. cross) the programmer
chose to use dynamic (that annotation could in fact be omitted
without changing the meaning of the code).

3. OVERVIEW
Given a Dart program with a test suite, we wish to know

for any expression e whether the test suite has sufficient
coverage to explore all possible types e may evaluate to. In
our setting, a test suite is simply a finite set of program
inputs. To simplify the discussion we assume that program
execution is deterministically determined by the input.

Definition 1 (Test completeness). A test suite T is
complete with respect to the type of an expression e, written
completeT (e), if execution of T covers all possible types e
may have at runtime.

The analysis we present conservatively approximates com-
pleteness (which is clearly undecidable): if the analysis re-
ports that the completeness condition is satisfied, then this is
indeed the case, but the analysis may sometimes be unable to
prove completeness even though the condition semantically
holds.

Our approach involves four components: 1) a dynamic
execution of the test suite, 2) a static dependence analysis,
3) a static type analysis, and 4) a test completeness analysis.
In this section we present an overview of the approach and
explain the purpose of each component. The subsequent
sections give more details about the components.

3.1 Combining over- and under-approximation
Our starting point is a well-known fact about dynamic ex-

ecution and static analysis: executing a test suite constitutes
an under-approximation of the program behavior, whereas
a static analysis (in the abstract interpretation style) can
provide an over-approximation. If the two agree, for example
regarding the possible types of an expression e, then the
completeness condition is trivially satisfied. Obviously, no
further tests can then possibly reveal new types of e.

For the program code shown in lines 36–39, a simple static
analysis is able to show that the only possible value of x

36 ...
37 x = new A();
38 x.m();
39 ...

on line 38 is the A object cre-
ated on line 37. That informa-
tion tells us not only that line 38
cannot fail with a message-not-
understood runtime error, but
also that the only possible callee
is the m method in class A.

For scalability reasons we wish to use only context-insensi-
tive and path-insensitive static analysis. (An analysis is
context-insensitive if it does not distinguish between differ-
ent calling contexts inter-procedurally [39], and it is path-
insensitive it if does not distinguish between the differ-
ent paths that may lead to a given program point intra-
procedurally [6].) The precision of such an analysis may
suffice for large parts of a program, but programs written in
dynamically typed languages often contain code that require
more heavyweight program analysis techniques, such as, re-

finement typing [44] or context sensitivity [4]. The following
example shows a typical case of value-dependent types.

40 class A {
41 m() { ... }
42 }
43 class B {}
44

45 f() {
46 var t = 42;
47 A x = g(t);
48 x.m();
49 }

50 g(a) {
51 var r;
52 if (a > 0) {
53 r = new A();
54 } else {
55 r = new B();
56 }
57 return r;
58 }

Here, A has a m method and B does not. The function g is
overloaded as its argument determines whether it returns
an object of type A or B (assume that some other code not
shown here contains a call to g with argument 0). The call
in line 47 clearly always returns an A object, but this fact
cannot be obtained by a context-insensitive static analysis
alone (it would infer that the type is either A or B). Nor is
it obvious by executing a test suite covering f that A is the
only possibility. If the call to g instead returned a B object,
then the program would fail at runtime, in checked mode
with a subtype-violation error at line 47 and in production
mode with a message-not-understood error at line 48.

3.2 Exploiting tests and dependencies
Our key insight is that it is possible through a combination

of lightweight static analysis and execution of a test suite to
obtain completeness guarantees for the kind of code shown
in the previous example.

The dependence analysis component One component
in our system is a context-insensitive and path-insensitive
dependence analysis that over-approximates the dependencies
of each expression in the given program. Unlike traditional
dependence analyses, this one considers both value and type
dependencies. (This dependence analysis is described in more
detail in Section 4.) For example, it infers that the type of
r in line 57 depends (only) on the value of the parameter
a. It also tells us that the parameter passed to g on line 47
has no dependencies (it is a constant). By combining these
pieces of information, we see that a single concrete execution
of line 47 suffices for learning all the possible types of the
return value at that call. Thus, we run the test suite, and if
it covers line 47 we learn that the only possible type is A—in
other words, the test suite is complete with respect to the
type of the return value of this particular call. Notice that
the static analysis alone does not have this information; we
need the concrete execution also.

The type analysis component The bar function shown
in lines 59–71 is a Dart version of a Ruby example by

59 bar(p) {
60 var y;
61 if (p) {
62 y = 3;
63 } else {
64 y = "hello";
65 }
66 if (p) {
67 y + 6;
68 } else {
69 y.length;
70 }
71 }

An et al. [2]. Assume that elsewhere
in the program, there are calls to bar
with arguments true and false. A
purely static analysis would require
path sensitivity to be able to prove
that y is always a number in line 67
(so that the + operation is guaranteed
to succeed) and a string in line 69
(so that it has a length field).

We now show how we can obtain
the necessary precision without path
sensitive static analysis. The depen-
dence analysis gives us that the type

3

of y in line 67 and the type of y in line 69 can only depend
on the value of the parameter p. As the actual value of
p is unknown to the dependence analysis, we need more
information to prove type safety of lines 67 and 69. For
this reason, we include another component in our system: a
context-insensitive and path-insensitive type analysis that
provides an over-approximation of the possible types of all
expressions. For the bar example, the type analysis tells
us that p is of type bool, i.e. its value can only be true or
false. Now, notice that by combining this information with
the dependence information we see that if executing the test
suite includes call to bar with both these two values then the
test suite is complete with respect to the type of y in lines 67
and 69. We thereby know that runtime type errors cannot
occur in those lines.

The Rubydust technique by An et al. [2] is able to infer
sound types for the bar function if all possible paths inside
the function are executed by the tests. For this particular
example, Rubydust can therefore, like our technique, infer
sound and precise types using only two executions of the
function. However, our technique differs in several impor-
tant aspects: (1) Rubydust infers sound types if all possible
paths are executed, but it does not know whether or not
that condition is satisfied (in this example, the control-flow
of the function suggests that there are four paths, but only
two are possible because of the branch correlation); in con-
trast, our technique is able to tell that the two executions
suffice. (2) In this example, the fact that the two branches
are correlated is quite obvious and could be inferred by a
very simple static analysis, and that information could easily
be incorporated into Rubydust. However, our techique is
capable of reaching the conclusion about the type of y with-
out reasoning explicitly about branch correlations. (3) If
bar contained additional branches with code not affecting y,
then the Rubydust soundness criterion would require more
than two executions, whereas our technique would still only
require two, to show type safety for the operations on y.

As these examples suggest, we use two lightweight static
analyses: a dependence analysis and a type analysis. A
central part of our approach for inferring test completeness
facts is combining the information provided by these analyses
with the information obtained from executing the test suite.
In Section 6 we explain how this can be achieved, a key step
being a mechanism for substituting type properties according
to dependencies.

3.3 Using the inferred completeness facts
Program correctness For Dart programs we are particu-
larly interested in test completeness at assignments, calls, and
field lookup operations. As mentioned in Section 2, running
Dart programs may encounter message-not-understood errors
at property lookup operations and subtype-violation errors
at implicit casts, even in programs that are accepted with-
out warnings by the static type checker. For a programmer,
knowing that his test suite is complete for such properties
gives confidence about the correctness of the program.

Test adequacy The notion of test completeness with respect
to type properties directly gives rise to a new metric for test
adequacy alongside statement coverage, branch coverage,
path coverage, etc. [49]:

Definition 2 (Type coverage). For a given set of expressions
X in a program and a test suite T , the type coverage of T ,
denoted CT (X), is computed as

CT (X) =
|{x ∈ X | completeT (x)}|

|X|

As X, one may select, for example, the set of expressions
that are subjected to implicit casts in a unit of code of
interest, e.g. a method, class, or library. A type coverage of
100% then means that the test suite is adequate for revealing
all implicit cast runtime errors that are possible in that unit
of code.

Traditional coverage metrics are not suitable for giving
such guarantees. For example, full statement coverage or full
branch coverage is not always sufficient, and full path cover-
age is impossible to achieve whenever loops are involved [49].
Other techniques that focus on branches and paths, such
as, basis path testing using cyclomatic complexity [32], have
similar limitations.

By selecting X as the set of receiver expressions of method
calls (e.g. x in line 48) and the function expressions at function
calls (e.g. g in line 47) in a unit of code, then 100% type
coverage implies that the call graph has been fully exercised
in that code. A programmer may use such information
to guide further testing. For example, if a test suite has
full statement coverage for two classes C and D, maybe only
30% of the part of the call graph that involves C has been
covered, while the number is 95% for D, in which case the
programmer should perhaps prioritize adding tests targeting
C rather than D. We leave it to future work to evaluate the
practical usefulness of reporting such type coverage numbers
to developers and how the type coverage metric correlates
with other metrics and with errors; for the rest of this paper
we focus on the use of test completeness in checking type
safety and inferring call graphs.

Type filtering A well-known trick in points-to analysis and
dataflow analysis is to use type tests (e.g., casts) that appear
in the program as type filters [40, 4, 20]. The type-related
completeness facts inferred by our analysis can of course be
exploited for such type filtering: if we have inferred that, for
example, y is definitely a string in line 69 then a subsequent
analysis may use that fact to filter away spurious values
that are not strings. As part of our evaluation in Section 7,
we demonstrate that performing type filtering based on the
completeness facts inferred by our analysis can have a sub-
stantial impact on the precision of type analysis and call
graph analysis.

The lightweight type analysis we use as one of our compo-
nents can directly use this mechanism itself, and increasing
precision of this component may lead to more completeness
facts being inferred. It therefore makes sense to repeat the en-
tire analysis, boosting precision using type filtering based on
type information inferred in the previous iteration. For now,
this remains an intriguing observation, however; although
it is possible to construct examples where the completeness
analysis becomes more precise by such a feedback mechanism,
we have not yet encountered much need in practice.

Optimizations The inferred completeness facts may also be
used for optimizations, for example, removal of runtime type
checks, dead-code elimination, replacement of indirect calls by
direct calls, inlining, and type specialization [9, 30, 20, 23, 26];
we leave such opportunities for future work.

4

4. DEPENDENCE ANALYSIS
As motivated in the preceding section, a key component

of our technique is a static dependence analysis. Unlike
traditional dependence analyses as used in, for example, op-
timization [17], information flow analysis [36] and program
slicing [42] we are interested in both value and type dependen-
cies. We therefore introduce a general dependence relation
denoted �, which is a binary relation over abstractions of
runtime states at different program points (inspired by the
notion of abstract dependence by Mastroeni and Zanardini
[31]). For example, we have seen that the type of y at the
program point after line 67 depends on the value of p at
line 59, which we write as typey[67] � valp[59]. The depen-
dence relation is computed using a whole-program analysis,
however, all dependencies are intra-procedural in the sense
that they relate variables and parameters within the same
function.

More generally, the dependence information we need can
be expressed via different abstractions of runtime states:

Definition 3 (Type, value, and top abstraction). The type
abstraction typex for a variable x maps a state σ to the
runtime type of x in σ. The value abstraction valx instead
maps σ to the value of x in σ. The top abstraction > is
the identity function on program states (we use this abstrac-
tion later to express dependencies that are unknown due to
analysis approximations).

The dependence relation can now be expressed as a relation
of the form π[c] � π′[c′] such that π, π′ ∈ Π and c ∈ C where
Π is a family of state abstractions and C is a set of program
points. (The program point associated with a given line is the
one immediately after that line.) We want the dependence
relation being computed to conservatively approximate all
dependencies in the following sense.

Property 1 (Valid dependence relation). Given any two
executions of the program that both reach a program point
c inside a function f with entry program point c0, let σ and
σ′ be the states at c for the two executions, respectively,
and similarly let σ0 and σ′

0 be the states at c0 when f was
entered. If there exists some state abstraction π ∈ Π where
π(σ) 6= π(σ′) then there must exist some π′ ∈ Π where
π[c] � π′[c0] and π′(σ0) 6= π′(σ′

0).

Intuitively, if two executions disagree on π at program point
c, then they must also disagree on π′ at the entry of the
function containing c, where π′ is some state abstraction that
π depends on. For example, if two executions disagree on
the type of r in line 50 then they must also disagree on the
value of a in line 57, so for our choice of state abstractions,
the dependence relation must include the fact that the type
of r depends on the value of a.

Program representation To concisely explain how the
dependence analysis works we represent a program as a
control flow graph (C, ↪→) where C is now a set of nodes
corresponding to primitive instructions of the different kinds
as shown in Figure 2 and ↪→⊆ C× C is the intra-procedural
control flow relation between nodes. We let ↪→+ be the
transitive closure of ↪→.

We assume nested expressions have been flattened, so
all primitive instructions operate directly on local variables
(which include function parameters) and nodes are uniquely
identified by the line number. Every call is represented by

entry[f, p1, . . . , pn] the entry of function f with
parameters p1, . . . , pn

call[f, x1, . . . , xn] calls function f with
arguments x1, . . . , xn

aftercall[x] writes the returned value to x
const[x, p] writes constant value p to x
new[x, D] writes new D instance to x

assign[x, y] writes value of y to x
load[x, y, f] writes value of y.f to x
store[x, f, y] writes value of y to x.f
is[x, D, y] writes true to x if value of y is

a subtype of D, false otherwise
binop[x, y,⊕, z] writes the result of the

operation y⊕ z to x
if[x] a branch on condition x

phi[x, x1, x2, B] writes φ(x1, x2) to x after branch
return[x] returns the value stored in x

Figure 2: Primitive instructions.

two nodes: a call node and an associated aftercall node.
The call node is labeled by the name of the function being
called (we explain in Section 5 how indirect function/method
calls are resolved), and for simplicity we assume every call
has a single callee. The program representation is in SSA
form [12], and every φ-node phi[x, x1, x2, B] is associated
with the set B of all if-nodes that dominate x1 or x2. Due
to the use of SSA, each variable name uniquely corresponds
to a node where the variable is assigned its value (where
parameters are considered to be assigned at the function
entry node), and we sometimes use the variable name to
denote the program point after that node. Furthermore, we
let entryc denote the entry program point of the function
containing node c. The meaning of the other kinds of nodes
is straightforward.

The dependence analysis We compute the dependence re-
lation � as the smallest fixpoint of the rules shown in Figure 3
(in addition, � is reflexive and transitive).

The Assign rule for an assignment assign[x, y] establishes
that the type and value of x depend on the type and value
of y, respectively. More precisely, for π = typex we see that
the type of x at the program point where x has been defined,
i.e. typex[x], depends on the type of y at the program point
where y has been defined, i.e. typey[y], and similarly for the
value. The BinOp rule shows that the value of the result
depends on the values of the two operands; however, the
type of the result is always fixed by the operator so it does
not depend on the operands. The Is rule for the instruction
is[x, D, y] shows that the value of x depends on the type of y.
(The type of x is always boolean.) A rule for const[x, p] can
be entirely omitted, since neither the type nor the value of
constants depend on anything.

To keep the analysis lightweight we choose to entirely avoid
tracking dependencies on the heap. This is modeled using
the > abstraction. In the Load rule for load[x, y, f], the type
and value of x conservatively depend on the entire state at the
entry of the function, i.e. >[entryc]. With this coarse model
of the heap, it is safe to omit a rule for store[x, f, y]. The
New rule captures the fact that the value being produced
by new[x, D] is unknown to the analysis (whereas the type is
trivially D, without any dependencies).

The Phi rule models dependencies that are due to the
data and control flow at branches, which are represented by
if[y] and phi[x, x1, x2, B] nodes. First, the type and value

5

(Assign)

assign[x, y] ∈ C π ∈ {type,val}
πx[x] � πy[y]

(BinOp)

binop[x, y,⊕, z] ∈ C l ∈ {y, z}
valx[x] � vall[l]

(Is)

is[x, D, y] ∈ C
valx[x] � typey[y]

(Load)

c = load[x, y, f] ∈ C π ∈ {type,val}
πx[x] �>[entryc]

(New)

c = new[x, D] ∈ C
valx[x] �>[entryc]

(Def)

c ∈ C π ∈ {type,val}
πx[c] � πx[x] >[c] �>[entryc]

(Phi)

phi[x, x1, x2, B] ∈ C

if[y] ∈ B
π ∈ {type,val}
l ∈ {x1, x2, y}

d =

{
πl[l] if l ∈ {x1, x2}
vall[l] if l = y

πx[x] � d

(Call)

c = call[f, x1, . . . , xn] ∈ C

ca = aftercall[x] ∈ C

ce = entry[f, p1, . . . , pn] ∈ C

cr = return[y] ∈ C

c ↪→ ca

ce ↪→+ cr
d =


valxi [xi] if πy[y] � valpi [ce]

typexi [xi] if πy[y] � typepi [ce]

>[entryc] if πy[y] �>[ce]

πx[x] � d

Figure 3: Rules for type and value dependence.

of x depend on the type and value, respectively, of both
x1 and x2. Second, the type and value of x also depend
on the value of the branch conditions in B. It is standard
to compute control flow dependence using post-dominance
information [12]. A node c ∈ C is control flow dependent on
c′ ∈ C if c′ determines whether c is executed, i.e. (i) there
is a path from c to c′ where every node in the path is post-
dominated by c′, and (ii) c is not post-dominated by c′.
Since we assume the control flow graph to be on SSA form,
control flow dependence for variables is already explicit in
the φ-nodes.

The Call rule exploits the dependencies computed be-
tween the return value and the parameters of the callee, to
obtain dependencies between the resulting value and the
arguments at the call site. In this rule, c is a call node and
ca is the associated aftercall node at the call site, while
ce is the callee entry node and cr is the return node. The
dependencies for the result x are found simply by substitut-
ing the dependencies of the return value y according to the
parameter binding.

Finally, the Def rule has the consequence that the type or
value of a variable x at any program point c can always be
determined from its type or value at the definition of x, and
the top abstraction at c depends on the top abstraction at
the entry of the function. This rule is strictly not necessary,
but it simplifies the use of � in Section 6.

Notice that even though type abstractions are conservative
approximations of value abstractions, all combinations of de-
pendencies between types and values can occur; in particular,
it is possible that the value of a variable x depends on the
type of another variable y (due to the Is rule), and that the
type of x depends on the value of y (due to the Phi rule).

Proposition 1 (Soundness of computed dependencies). For
any program, the relation � defined by the least fixpoint of
the dependence rules satisfies Property 1.

Example For the example in lines 40–58, the dependence
analysis infers, in particular, that typer[57] � vala[50] but
not typer[57] � >[50], and that there is no π such that

typet[47] � π[45]. Therefore the Call rule gives that there
is also no π′ such that typex[x] � π′[45], i.e., the type of x
does not depend on the input to f.

5. TYPE ANALYSIS
The static type analysis component serves two purposes: it

resolves indirect calls for the dependence analysis in Section 4,
and it computes an over-approximation of the possible types
of every expression, which we use in the test completeness
analysis in Section 6. The type analysis is simply a context-
insensitive and path-insensitive Andersen-style points-to anal-
ysis [3] that simultaneously tracks functions/methods and
types. This is a well-known analysis technique (see e.g. the
survey by Sridharan et al. [40]), so due to the limited space
we omit a detailed description of how this component works.
We choose a lightweight analysis for the reasons given in
Sections 1 and 3.

In Dart, all values are objects, including primitive values
and functions. The analysis abstracts primitive values by
their type (e.g. bool or String) and treats each function and
method as having its own type. As output, for every program
point c the analysis returns an abstract state σ̂c that over-
approximates all concrete states that may appear at c when
the program is executed. We define σ̂c(e) to be the set of
types the expression e may evaluate to according to σ̂c.

Example Consider a call to the cross function from Figure 1

72 x = cross(y,z);

in a context where the type analysis finds that the type
of y is either vec3 or vec2 and the type of z is vec3. That
is, σ̂c(y) = {vec3, vec2} and σ̂c(z) = {vec3} where c is
the program point at the call. (This example uses a direct
call, so the connection between the call and the callee is
trivial.) Assuming there are other calls to cross elsewhere in
the program, the context-insensitive type analysis has only
imprecise information about the possible return types for this
function. However, the dependence analysis has inferred that
the return type only depends on the types of the parameters.

6

(Base)

∀(a1, . . . , an) ∈ π1(σ̂c)× · · · × πn(σ̂c) :
∃t ∈ T, σ ∈ JtKc : ∀i = 1, . . . , n : πi(σ) = ai

T ` π1, . . . , πn[c]

(Inductive-ToEntry)

{π′
1, . . . , π

′
m} = {π′ | πi[c] � π′[entryc]} T ` π′

1, . . . , π
′
m[entryc]

T ` π1, . . . , πn[c]

(Inductive-ToCall)

c = call[f, x1, . . . , xn] ∈ C

ca = aftercall[x] ∈ C

ce = entry[f, p1, . . . , pn] ∈ C

cr = return[y] ∈ C

c ↪→ ca

ce ↪→+ cr

π ∈ {type,val} T ` π′
1, . . . , π

′
m[c]

{π′
1, . . . , π

′
m} =

{valxi | πy[y] � valpi [ce]} ∪
{typexi | πy[y] � typepi [ce]} ∪
{> | πy[y] �>[ce]})

T ` πx[ca]

Figure 4: Rules for test completeness.

This allows the test completeness analysis, presented in the
following section, to conclude that two executions suffice to
cover all possible types of x: one where y has type vec3 and
one where it has type vec2. This example demonstrates the
power of combining dependence analysis and type analysis.

Now consider a slight modification of the example, where
the type of both y and z is either vec3 or vec2. Our tech-
nique then requires four executions of the call to ensure that
all relevant combinations are covered. This suggests that
relational dependence and type information may be valuable:
since we only obtain test completeness guarantees at a call
when all combinations of dependencies have been exercised,
it may be beneficial to know that only some combinations
are relevant. This is an opportunity to be explored in future
work.

6. TEST COMPLETENESS
In this section we present a proof system for test complete-

ness, i.e., for proving completeT (x) for a given variable x

in some program with a test suite T (see Definition 1). (We
use the program representation from Section 4, so we assume
without loss of generality that the expression of interest is
simply a variable x.)

The proof rules, shown in Figure 4, rely on three ingredi-
ents: the execution of T , the dependence relation � from Sec-
tion 4, and for each program point c the abstract state σ̂c

produced by the type analysis from Section 5. Each test
input t ∈ T gives rise to a program execution, which can be
seen as a sequence of concrete states at different program
points. We write JtKc for the set of states encountered at
program point c when t is executed.

A simple judgment T ` π[c] intuitively means that the test
suite T is complete with respect to the state abstraction π
(see Definition 3) at program point c. In other words, the
judgment holds if for every abstract value in π(σc) where σc is
a runtime state at c in some execution of the program, there
exists a test in T that also encounters that abstract value at c.
In particular, we are interested in the type abstraction typex

and the program point where x is defined. We therefore aim
for the following connection between proof judgments and
test completeness for type properties.

Proposition 2 (Soundness of test completeness analysis).

T ` typex[x] implies completeT (x)

To show completeT (x) for some variable x, we thus at-
tempt to derive T ` typex[x].

More generally, judgments may involve multiple state ab-
stractions: T ` π1, . . . , πn[c]. The intuitive interpretation
of such a judgment is that T is complete with respect to
the product of the state abstractions π1, . . . , πn at program
point c.

We now briefly describe the rules from Figure 4.

The Base rule corresponds to the observation in Section 3.1
that completeness sometimes can be shown using the infor-
mation from the type analysis. To understand the rule in its
full generality, consider first this special case:

∀a ∈ σ̂c(x) : ∃t ∈ T, σ ∈ JtKc : typex(σ) = a

T ` typex[c]

This rule states that a test T is complete for the type of x if
for all the types a ∈ σ̂c(x) that can be observed according to
the type analysis (Section 5), there exists an execution that
reaches program point c with a concrete state σ where x has
type a.

A first step from this special case toward the general
Base rule is to generalize it from using the type abstraction
type to use any state abstraction π ∈ Π. For this, we
introduce notation for lifting a state abstraction π to operate
on abstract states produced by the type analysis: we define
π(σ̂c) = {π(σc) | σ̂c is the type abstraction of σc}. Note
that π(σ̂c) can be infinite, for example if π = >. This
corresponds to a completeness condition that requires an
infinite set of executions, so in that situation we can simply
give up. Another interesting case is when π = valx for some
variable x. This occurs when our analysis is required to prove
T ` valp[c] in the example lines 59–71 in Section 3 (where
c is the program point at the entry of bar). Because p is
a boolean according to the type analysis, valp(σ̂c) contains
only the two values true and false, so two executions suffice
to prove T ` valp[c].

The last step to the general Base rule is to account for
judgments with multiple state abstractions π1, . . . , πn. For
this case, we simply require observations of all combinations
of abstract values in π1(σ̂c)× · · · × πn(σ̂c).

The Inductive-ToEntry rule simply uses the dependence
relation � to substitute a completeness property at a program
point c with a completeness property at the function entry
entryc.

The Inductive-ToCall rule mimics the Call rule from
the dependence analysis (Figure 3), substituting complete-
ness properties at calls according to the dependencies of

7

the callee. This corresponds to the reasoning used for the
example in Section 3.2 for the call in line 47.

Completeness proofs can be obtained by proving ground
facts using the Base rule, and then deriving all the others
using the inductive rules whenever their premises are satis-
fied. It is easy to see that this procedure terminates, as the
induction proceeds in program order.

Using test completeness for type filtering As suggested
in Section 3.3, the completeness facts being inferred can be
plugged in as type filters in a type analysis. For example,
we can run the type analysis described in Section 5 a second
time, now using type filtering.

Let X be the set of observed runtime types for a variable
x where completeT (x). By Proposition 2 this is the set of
all the possible types x may have in any execution. During
the type analysis, for every abstract state, we can filter out
those types of x that are not in X. Removing those spurious
types may improve precision throughout the program.

7. EXPERIMENTAL EVALUATION
Our experimental evaluation addresses the following four

research questions.

Q1 To what extent is the technique capable of showing test
completeness for realistic Dart programs and test suites?
More specifically, what is the type coverage being com-
puted for such programs and test suites?

Q2 Does the hybrid static/dynamic approach result in better
precision for soundly checking absence of runtime type
errors (message-not-understood and subtype-violation
errors) and producing precise call graph information
(outdegree of calls, reachable functions), compared to
an analysis that does not exploit the test suites?

Q3 How important is the dependence analysis, which is a
central component in our technique, for the precision of
the computed type coverage?

Q4 In situations where the analysis cannot show test com-
pleteness, is the cause likely to be insufficient tests or
lack of precision in the static analysis components?

Implementation and benchmarks Our implementation,
Goodenough, consists of the four components listed in Sec-
tion 3, including the type filtering technique that uses com-
pleteness facts to improve the type analysis. For logging
the runtime types of expressions we use a small runtime
instrumentation framework inspired by Jalangi [38]. We
keep the runtime overhead low by only observing types at
variable reads and calls in the application code, and we do
not instrument libraries.

The evaluation is based on 27 benchmarks, ranging from
small command-line and web applications to sample applica-
tions that demonstrate the use of libraries. The benchmarks
are listed is in the first column of Table 1. The second column
shows the size of each benchmark in number of lines of code
(excluding unreachable library code). We use the existing
test suites available for the command-line applications; for
the web applications we obtain test suites by manually exer-
cising the applications via a browser for one minute each. To
obtain some degree of confidence that the static analysis com-
ponents are sound, we check that all runtime observations
agree with the static analysis results.

Table 1: Results.

>0% 1% 5% 30% 100%

Program LOC CT (X) MNU UIC RF CGS PI
a star 1 025 83.6% - - 0.31% 7.53% 77.27%

archive 1 682 87.8% 11.11% - - 0.17% 3.45%

bad aliens 1 393 77.6% 4.26% 18.18% - 0.16% 22.22%

box2d 7 675 70.9% 4.13% 10.10% 3.87% 3.32% 22.52%

csslib 5 911 82.4% 6.45% 1.54% 2.02% 2.69% 7.85%

Dark 12 853 78.4% 25.88% 1.41% - 0.55% 10.63%

dart regexp tester 2 208 84.8% - - - - -
Dartrix 1 323 80.2% - - 0.50% 1.49% 66.67%

dartrocket 9 641 74.7% - - - - -
frappe 4 723 77.8% - - - - -
graphviz 2 648 80.7% - 6.25% - - -
markdown 1 350 89.9% - - 1.98% 8.57% 63.72%

qr 4 906 87.2% - - - 0.88% 16.00%

petitparser 2 981 69.0% - - 0.31% 3.68% 33.62%

pop pop win 12 558 71.8% - - 0.08% 0.86% 17.01%

rgb cube 831 86.1% - - - - -
solar 439 85.1% - - - - -
solar3d 7 181 86.5% 71.74% 6.90% 2.88% 4.65% 17.65%

spaceinvaders 1 026 75.9% - - - - -
speedometer 267 91.0% - - - - -
spirodraw 923 86.5% 4.76% 5.56% - 4.54% -
stats 1 162 84.2% 35.71% 9.09% - - -
sunflower 359 86.4% 75.00% 33.33% - - -
three 6 590 83.3% 42.05% 5.29% 20.93% 7.91% 8.00%

todomvc vanilladart 2 786 78.4% 2.08% 5.00% 0.15% 0.93% 7.58%

tutorial kanban 578 70.3% - - - - -
vote 6 377 76.7% 17.29% 7.69% 15.16% 18.08% 31.10%

The implementation, benchmarks, test suites, and details
of the experimental results are available online.4

Q1: Type coverage
To answer the first question we run Goodenough on each
benchmark with its test suite T and measure the type cover-
age CT (X), where X is chosen as the set of all the expressions
in the program. (Due to Proposition 2, the type coverage
numbers we report are safe in the sense that they under-
approximate the semantic definition of type coverage given
by Definition 2.) The results are shown in the third column
of Table 1.

Type coverage is generally high, with an average of 81 %.
In other words, the analysis is able to guarantee for 81 % of
the expressions that all types that can possibly appear at
runtime are in fact observed by execution of the test suite.

Q2: Type errors and call graphs
To investigate whether our hybrid static/dynamic approach
to test completeness can be useful for showing absence of
type errors and inferring sound call graph information, we
compare Goodenough with a variant that does not exploit
the runtime observations from the test suite. We select five
metrics for measuring the precision:
MNU (message-not-understood): reported number of warn-

ing for possibly failing access to a field or a method;
UIC (unsafe implicit cast): reported number of warning for

subtype violation that may arise from an implicit down-
cast (only meaningful for checked mode execution);

CGS (call-graph size): number of edges in the call graph;
RF (reached functions): number of possibly reached func-

tions;
PI (polymorphic invocation): number of call sites with mul-

tiple potential callees.

4URL omitted for double-blind reviewing.

8

The columns MNU, UIC, RF, CGS, and PI in Table 1 show the
percentage change of the resulting numbers for the hybrid
analysis compared to the fully-static analysis.

We see that the hybrid analysis is able to greatly improve
the precision for some benchmarks, while it gives marginal
or no improvements in others. This is not surprising, con-
sidering the different nature of the benchmarks and their
programming style. For a few benchmarks, the naive fully-
static analysis already obtains optimal precision for MNU

or UIC, leaving no room for improvements with the hybrid
technique. Interestingly, 19 out of 27 benchmarks improve for
at least one metric, meaning that the hybrid approach shows
advantages across a variety of programs. This confirms that
type filters based on inferred completeness facts can have a
substantial impact on the precision of the type analysis, as
discussed in Section 3.

An important design decision has been that the static
analysis components are context- and path-insensitive to keep
the system lightweight. By manually studying some of the
examples where our hybrid approach obtains high precision,
we see that a fully-static alternative would require a high
degree of context sensitivity to reach the same conclusions,
and it is well known that such analyses do not scale well.

For example, a context-insensitive static analysis is insuffi-
cient to reason precisely about the return type of functions
similar to cross from the vector math library discussed in Sec-
tion 1. In contrast, Goodenough finds 19 calls to cross
where the test suite is complete, which enables the static
type analysis to filter the inferred types for the return of the
calls and thereby avoid several spurious warnings.

Another example is found the Dark benchmark:

73 var canvas;
74 GL.RenderingContext gl;
75 void startup() {
76 canvas = querySelector("#game");
77 gl = canvas.getContext("webgl");
78 if (gl==null)
79 gl = canvas.getContext("experimental-webgl");
80 if (gl==null) {
81 crash("No webgl", "Go to [...]");
82 return;
83 }
84 ...
85 }
86 void start(Level _level) {
87 ...
88 GL.Texture colorLookupTexture = gl.createTexture();
89 ...
90 }

According to the type analysis, canvas can be any subtype of
the HTML Element class, and the calls to getContext return
objects of type CanvasRenderingContext2D or RenderingContext.
With this information, one would conclude that in checked
mode execution subtype-violation errors may occur at the two
assignments to gl, and in production mode the createTexture
invocation may result in a message-not-understood error since
createTexture is not declared by CanvasRenderingContext2D.
Although canvas can be an arbitrary HTML element, the
call is monomorphic. The results of the calls to getContext
only depend on the value of the arguments, which are con-
stant. Executing the two branches dynamically is enough
to prove type completeness for both calls, which reveals
that both calls return objects of type RenderingContext, not
CanvasRenderingContext2D. Type filtering uses this fact to
remove spurious dataflow. This example also shows the im-

portance of test coverage: a single execution does not suffice
to cover all types at both calls.

While a lightweight type analysis (e.g. the one from Sec-
tion 5) cannot reach the conclusion that only RenderingContext
objects may be returned by getContext, a more precise anal-
ysis could. In this case, 2-CFA context sensitivity would be
needed if we did not exploit the dynamic executions, since
the argument to getContext is passed to the native function
getContext_Callback_2_. In other cases, we see that 5-CFA
would be necessary to reach the same precision as our hybrid
approach.

To correctly handle the example above with a fully static
analysis, it would additionally be necessary to precisely model
the implementation of getContext_Callback_2_: it returns a
RenderingContext object when the argument is "webgl" or
"experimental-webgl", and a CanvasRenderingContext2D object
when the argument is "2d". The Dart SDK contains more
than 10 000 external functions, many of which are highly over-
loaded in such ways. As an example, the method getParameter
of RenderingContext from the WebGL API returns 15 (un-
related) types depending on which of 87 constants the ar-
gument matches.5 Another example is the library function
Element.tag, which calls a native function that has more
than 200 cases involving different types, which a fully static
analysis would need detailed models for. Thus, our hybrid
approach avoids a massive task of modeling such details, as
it only needs the dependence information.

We also observe that test completeness is useful for rea-
soning about the types of numeric expressions without the
need for context sensitivity, constant folding and constant
propagation. Indeed, the type of many numerical expressions
only depends on the types of the operands. The following
simple example from Dark is one of many where cast failures
may occur in checked mode execution according to a naive
type analysis:

91 void move(double iX, double iY, double passedTime) {
92 ...
93 double frictionXZ = pow(0.0005, passedTime);
94 double frictionY = pow(0.2, passedTime);

The declared return type of pow is num, which has subtypes
int and double. Covering the two calls to bar with a single
execution is enough to ensure completeness.

Q3: Dependence analysis
The dependence analysis finds that 73 % of all function return
expressions have no type dependencies on the function entry
state. This means that a single execution of those expressions
is enough to cover all their possible types. At other 16 % of
the return expressions, the return type depends on the types
or values of one or more parameters but not on the heap,
and for the remaining 11 % the dependence analysis finds
dependencies on the heap.

To investigate the importance of the dependence analysis,
we have repeated the experiments from Q1 and Q2 using a
weaker dependence analysis that does not exploit the call
graph produced by the type analysis. Instead, the type and
value dependencies of the return value at the call site of all
indirect calls are conservatively set to top. This single restric-
tion causes a reduction in the number of completeness facts
being proven and a significant degradation in the precision

5https://developer.mozilla.org/en-US/docs/Web/API/
WebGLRenderingContext/getParameter

9

https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/getParameter
https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/getParameter

metrics: type coverage drops from 81 % to 77 %, and the
precision of type error detection and call graph construction
drops to almost the same as the naive fully-static analysis
(leaving only a 0.7 % improvement of the UIC metric for
the Dark benchmark). These results demonstrate that the
dependence analysis is indeed a critical component.

Q4: Reasons for inability to show test completeness
To answer Q4, we have investigated the behavior of our anal-
ysis in selected places where Goodenough is not able to
prove test completeness. It is naturally difficult to quantify
the reasons, yet some patterns are clear. Our preliminary
investigation has identified two main reasons: missing cover-
age by the test suites, and too coarse heap modeling in the
dependence analysis. On the other hand, imprecision in the
type analysis does not appear to be significant.

As we have already seen in the Dark example in the answer
to Q2, coverage is indeed important to prove test complete-
ness. In that case two executions on specific browser versions
were needed. In many other cases, we see that simply im-
proving the statement coverage of the test suite would likely
improve the type coverage significantly.

For this first design of our technique, we have chosen a
simplistic approach to dependence analysis, in particular, by
using the top abstraction at all field load operations. Consider
the following example, which uses the parse function from a
Dart HTML5 parser6.

95 f() {
96 DivElement div = parse("<div></div>").firstChild;
97 }
98 Document parse(input, ...) {
99 var p = new HtmlParser(input, ...);

100 return p.parse();
101 }

The parse function always returns a tree of HTML elements
whose structure is determined solely by the input to parse.
A dependence analysis that is able to track dependencies
on the heap could in principle determine that the lookup of
firstChild always has the same type, or equivalently, that
the expression has no type dependencies. We see similar
cases in many of the libraries being used in the benchmarks.
This observation suggests that extending the dependence
analysis to also track dependencies involving the heap may
be a promising direction for future work.

8. RELATED WORK
Types in dynamic languages Many techniques have been
proposed to statically reconstruct precise type information
for dynamic languages, for example, for optimization pur-
poses [26, 23]. The type inference approach by An et al. [2]
is discussed in Section 3.2. Dependent types and flow-based
type checking can deal with common dynamic patterns, such
as, value-based overloading [10, 29, 35, 44, 41, 21]. These
techniques require programmers to provide detailed type
annotations. Advanced static analysis has been used to pre-
cisely infer and check types in JavaScript [4], however, this
has not yet been proven to scale to realistic programs.

Test adequacy and coverage metrics Numerous criteria
for deciding whether a test suite is adequate and metrics for
measuring coverage have been proposed (the key concepts

6https://github.com/dart-lang/html

being described by Zhu et al. [49]), so due to the limited space
we can only mention the high-level relations to our work.
The focus in the literature is typically on using coverage
metrics to guide the effort of testing programs. Common
to most of those techniques, including the seminal work by
Goodenough and Gerhart [19], is that they do not come with
tool support for checking whether a test suite has adequate
coverage to guarantee properties like absence of runtime type
errors. The general idea of “test completeness” has a long
history [19, 25, 24, 8], but until now without the connection
to types in dynamic languages.

Hybrid analysis Many hybrids of static and dynamic anal-
ysis have been developed, typically aiming to combine the
strengths of both parts [48, 11, 7, 22, 27], or to use dynamic
executions to guide static analysis [46, 37, 34]. Notably,
the method by Yorsh et al. [48] uses automated theorem
proving to check that a generalized set of concrete states
obtained by dynamic execution covers all possible executions.
This involves a notion of abstraction-based adequacy, which
is reminiscent of our notion of type coverage. Predicate-
complete testing is another related idea [5]. Most hybrid
analysis create tests on-the-fly and do not exploit preexisting
test suites, but for the dynamic programming patterns that
are our primary target, automatically creating useful tests is
by itself a considerable challenge. One approach that does
use test suites and is designed for a dynamic programming
language is blended analysis [46], however, it is unsound in
contrast to our technique.

Dependence analysis Many variations of the concept of
dependence described in Section 4 appear in the literature.
From a theoretical point of view, our definitions fit nicely
into the framework proposed by Mastroeni and Zanardini
[31]. In the field of information flow [18], dependence plays
an important role in reasoning about non-interference. In
program slicing [47] and compiler optimization (e.g. [17]),
program dependence graphs [28] model the dependencies be-
tween values used in different statements. The novelty of the
dependence analysis in Section 4 is to capture dependencies
not only between values but also between types.

9. CONCLUSION
We have presented the notions of test completeness and

type coverage together with a hybrid program analysis for
reasoning about adequacy of test suites and proving type-
related properties. Moreover, we have demonstrated using
our implementation Goodenough how this analysis tech-
nique is suitable for showing absence of type errors and
inferring sound call graph information, in Dart code that is
challenging for fully-static analysis.

Many interesting opportunities for future work exist. We
plan to explore how better heap modeling in the dependence
analysis and relational dependence and type analysis can
improve precision further. In another direction, we intend to
perform an empirical study of how the type coverage metric
correlates with other metrics and with programming errors,
and to use type coverage to guide automated test generation.
It may also be interesting to use the type analysis results for
program optimizations and to apply our approach to other
dynamic languages.

10

https://github.com/dart-lang/html

References
[1] B. Åkerblom and T. Wrigstad. Measuring polymor-

phism in Python programs. In Proc. 11th Symposium
on Dynamic Languages (DLS), 2015.

[2] J. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks.
Dynamic inference of static types for Ruby. In Proc. 38th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2011.

[3] L. O. Andersen. Program analysis and specialization for
the C programming language. PhD thesis, University of
Cophenhagen, 1994.

[4] E. Andreasen and A. Møller. Determinacy in static anal-
ysis for jQuery. In Proc. ACM International Conference
on Object Oriented Programming Systems Languages &
Applications (OOPSLA), 2014.

[5] T. Ball. A theory of predicate-complete test coverage and
generation. In Proc. Formal Methods for Components
and Objects, 3rd International Symposium (FMCO),
2004.

[6] T. Ball and S. K. Rajamani. Bebop: a path-sensitive in-
terprocedural dataflow engine. In Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software
Tools and Engineering (PASTE), 2001.

[7] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J.
Simmons, S. Tetali, and A. V. Thakur. Proofs from
tests. IEEE Transactions on Software Engineering, 36
(4):495–508, 2010.

[8] T. A. Budd and D. Angluin. Two notions of correctness
and their relation to testing. Acta Informatica, 18(1):
31–45, 1982.

[9] C. Chambers and D. Ungar. Customization: Optimiz-
ing compiler technology for SELF, a dynamically-typed
object-oriented programming language. In Proc. ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 1989.

[10] R. Chugh, D. Herman, and R. Jhala. Dependent types
for JavaScript. In Proc. ACM International Conference
on Object Oriented Programming Systems Languages
and Applications (OOPSLA), 2012.

[11] C. Csallner and Y. Smaragdakis. Check ’n’ crash: com-
bining static checking and testing. In Proc. 27th Inter-
national Conference on Software Engineering (ICSE),
2005.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single as-
signment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

[13] E. W. Dijkstra. Notes on structured programming. Tech-
nical Report EWD249, Technological University Eind-
hoven, 1970.

[14] Ecma International. Dart Programming Language Spec-
ification, ECMA-408, 3rd Edition, June 2015.

[15] E. Ernst, A. Møller, M. Schwarz, and F. Strocco. Mes-
sage safety in Dart. In Proc. 11th Symposium on Dy-
namic Languages (DLS), 2015.

[16] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and
F. Tip. Efficient construction of approximate call graphs
for JavaScript IDE services. In Proc. 35th International
Conference on Software Engineering (ICSE), 2013.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Transactions on Programming Languages and Sys-
tems, 9(3):319–349, 1987.

[18] J. A. Goguen and J. Meseguer. Security policies and
security models. In IEEE Symposium on Security and
Privacy, 1982.

[19] J. B. Goodenough and S. L. Gerhart. Toward a the-
ory of test data selection. ACM SIGPLAN Notices –
International Conference on Reliable Software, 10(6):
493–510, 1975.

[20] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel,
and K. T. Tekle. Alias analysis for optimization of
dynamic languages. In Proc. 6th Symposium on Dynamic
Languages (DLS), 2010.

[21] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing
local control and state using flow analysis. In Proc.
Programming Languages and Systems - 20th European
Symposium on Programming (ESOP), 2011.

[22] A. Gupta, R. Majumdar, and A. Rybalchenko. From
tests to proofs. International Journal on Software Tools
for Technology Transfer, 15(4):291–303, 2013.

[23] B. Hackett and S. Guo. Fast and precise hybrid type
inference for JavaScript. In Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation (PLDI), 2012.

[24] W. Howden. Reliability of the path analysis testing
strategy. IEEE Transactions on Software Engineering,
SE-2(3):208–215, Sept 1976.

[25] W. E. Howden. Weak mutation testing and completeness
of test sets. IEEE Transactions on Software Engineering,
(4):371–379, 1982.

[26] M. N. Kedlaya, J. Roesch, B. Robatmili, M. Reshadi,
and B. Hardekopf. Improved type specialization for
dynamic scripting languages. In Proc. 9th Symposium
on Dynamic Languages (DLS), 2013.

[27] K. Knowles and C. Flanagan. Hybrid type checking.
ACM Trans. Program. Lang. Syst., 32(2), 2010.

[28] B. Korel. The program dependence graph in static
program testing. Information Processing Letters, 24(2):
103–108, 1987.

[29] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishna-
murthi. TeJaS: retrofitting type systems for JavaScript.
In Proc. 9th Symposium on Dynamic Languages (DLS),
2013.

11

[30] F. Logozzo and H. Venter. RATA: rapid atomic type
analysis by abstract interpretation - application to
JavaScript optimization. In Proc. Compiler Construc-
tion, 19th International Conference (CC), 2010.

[31] I. Mastroeni and D. Zanardini. Data dependencies and
program slicing: from syntax to abstract semantics. In
Proc. ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation (PEPM),
2008.

[32] T. J. McCabe. A complexity measure. IEEE Transac-
tions on Software Engineering, 2(4):308–320, 1976.

[33] Microsoft. TypeScript language specification, Febru-
ary 2015. http://www.typescriptlang.org/Content/

TypeScript%20Language%20Specification.pdf.

[34] M. Naik, H. Yang, G. Castelnuovo, and M. Sagiv. Ab-
stractions from tests. In Proc. 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 373–386, 2012.

[35] A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and
P. Vekris. Safe & efficient gradual typing for TypeScript.
In Proc. 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2015.

[36] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003.

[37] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dy-
namic determinacy analysis. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2013.

[38] K. Sen, S. Kalasapur, T. Brutch, and S. o. Gibbs.
Jalangi: A selective record-replay and dynamic anal-
ysis framework for JavaScript. In Proc. Symposium on
the Foundations of Software Engineering (FSE), 2013.

[39] M. Sharir and A. Pnueli. Two approaches to interpro-
cedural dataflow analysis. In Program Flow Analysis:
Theory and Applications, pages 189–233. Prentice-Hall,
1981.

[40] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and
E. Yahav. Alias analysis for object-oriented programs. In
Aliasing in Object-Oriented Programming. Types, Anal-
ysis and Verification, volume 7850 of LNCS, pages 196–
232. Springer, 2013.

[41] A. Takikawa, D. Feltey, E. Dean, M. Flatt, R. B. Findler,
S. Tobin-Hochstadt, and M. Felleisen. Towards practical
gradual typing. In Proc. 29th European Conference on
Object-Oriented Programming (ECOOP), 2015.

[42] F. Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3(3), 1995.

[43] S. Tobin-Hochstadt and M. Felleisen. The design and
implementation of typed Scheme. In Proc. 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), 2008.

[44] P. Vekris, B. Cosman, and R. Jhala. Trust, but verify:
Two-phase typing for dynamic languages. In Proc. 29th
European Conference on Object-Oriented Programming
(ECOOP), 2015.

[45] M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker.
Design and evaluation of gradual typing for Python. In
Proc. 10th ACM Symposium on Dynamic Languages
(DLS), 2014.

[46] S. Wei and B. G. Ryder. Practical blended taint analysis
for JavaScript. In Proc. International Symposium on
Software Testing and Analysis (ISSTA), 2013.

[47] M. Weiser. Program slicing. In Proc. 5th International
Conference on Software Engineering (ICSE), 1981.

[48] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction,
theorem proving: better together! In Proc. ACM/SIG-
SOFT International Symposium on Software Testing
and Analysis (ISSTA), 2006.

[49] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Computing Surveys,
29(4):366–427, 1997.

12

http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf

	Introduction
	The Dart Programming Language
	Overview
	Combining over- and under-approximation
	Exploiting tests and dependencies
	Using the inferred completeness facts

	Dependence Analysis
	Type analysis
	Test completeness
	Experimental Evaluation
	Related Work
	Conclusion

